Inscrivez-vous maintenant pour un meilleur devis personnalisé!

Meta's AI luminary LeCun explores deep learning's energy frontier

31 mars 2022 Hi-network.com

So-called energy-based models, which borrow from statistical physics concepts, could lead to deep learning forms of AI that make abstract predictions, says Yann LeCun, Meta's chief scientist.

Three decades ago, Yann LeCun, while at Bell Labs, formalized an approach to machine learning called convolutional neural networks that would prove to be profoundly productive in solving tasks such as image recognition. CNNs, as they're commonly known, are a workhorse of AI's deep learning, winning LeCun the prestigious ACM Turing Award, the equivalent of a Nobel for computing, in 2019. 

These days, LeCun, who is both a professor at NYU and chief scientist at Meta, is the most excited he's been in 30 years, he toldZDNetin an interview last week. The reason: New discoveries are rejuvenating a long line of inquiry that could turn out to be as productive in AI as CNNs are.

That new frontier that LeCun is exploring is known as energy-based models. Whereas a probability function is "a description of how likely a random variable or set of random variables is to take on each of its possible states" (see Deep Learning, by Ian Goodfellow, Yoshua Bengio & Aaron Courville, 2019), energy-based models simplify the accordance between two variables. Borrowing language from statistical physics,  energy-based models posit that the energy between two variables rises if they're incompatible and falls the more they are in accord. This can remove the complexity that arises in "normalizing" a probability distribution.

It's an old idea in machine learning, going back at least to the 1980s, but there has been progress since then toward making energy-based models more workable. LeCun has given several talks in recent years as his thoguhts on the matter were developing, including a talk at the Institute for Advanced Study in Princeton in 2019, reported on by ZDNet.

More recently, LeCun has described the current state of energy-based model research in two papers. "Barlow Twins," published last summer with colleagues from Facebook AI Research and VICReg," which was published in January with FAIR and France's Inria at the

tag-icon Tags chauds: Intelligence artificielle Innovation et Innovation

Copyright © 2014-2024 Hi-Network.com | HAILIAN TECHNOLOGY CO., LIMITED | All Rights Reserved.